All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

NEURAL NETWORK PREDICTION OF THE FLOW FIELD IN A PERIODIC DOMAIN WITH HYPERNETWORK PARAMETRIZATION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43968209" target="_blank" >RIV/49777513:23520/22:43968209 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scipedia.com/sj/eccomas2022" target="_blank" >https://www.scipedia.com/sj/eccomas2022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23967/eccomas.2022.192" target="_blank" >10.23967/eccomas.2022.192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    NEURAL NETWORK PREDICTION OF THE FLOW FIELD IN A PERIODIC DOMAIN WITH HYPERNETWORK PARAMETRIZATION

  • Original language description

    This paper is concerned with fast flow field prediction in a blade cascade for variable blade shapes as well as variable Reynolds number using the machine-learning architecture called convolutional neural network. To generate flow field for a specific Reynolds number, an encoder-decoder convolutional neural network, also called U-Net, is used. The values 500, 1000 and 1500 of the Reynolds number are chosen as the training set. Three U-Nets were trained on CFD results for 100 blade profiles, each U-Net for a different Reynolds number. In order to get a prediction for variable Reynolds number, a so-called hypernetwork in employed. The hypernetwork essentially interpolates between the two trained U-Nets. The architecture of the hypernetwork is fully-connected feedforward neural network with one input neuron correspond-ing to the Reynolds number, one hidden layer and the output layer corresponds to the weights for the interpolated U-Net. The concept of the hypernetwork-based parametrization is tested on a problem of compressible fluid flow through a blade cascade with three unseen blade profiles and unseen Reynolds number.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20302 - Applied mechanics

Result continuities

  • Project

    <a href="/en/project/GA21-31457S" target="_blank" >GA21-31457S: Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ECCOMAS conference proceeding

  • ISBN

  • ISSN

    2696-6999

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Scipedia S.L.

  • Place of publication

    Barcelona

  • Event location

    Oslo

  • Event date

    Jun 5, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article