Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968210" target="_blank" >RIV/49777513:23520/23:43968210 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1758825123500187" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1758825123500187</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1758825123500187" target="_blank" >10.1142/S1758825123500187</a>
Alternative languages
Result language
angličtina
Original language name
Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization
Original language description
This paper deals with flow field prediction in a blade cascade using the convolution neural network. The convolutional neural network (CNN) predicts density, pressure and velocity fields based on the given geometry. The blade cascade is modeled as a single interblade channel with periodic boundary conditions. In this paper, an algorithm that enforces periodic boundary conditions onto the CNN is presented. The main target of this study is to parametrize the CNN model depending on the Reynolds number. A new parametrization approach based on a so-called hypernetwork is employed for this purpose. The idea of this approach is that when the Reynolds number is modified, the hypernetwork modifies the weights of the CNN in such a way that it produces flow fields corresponding to that particular Reynolds number. The concept of the hypernetwork-based parametrization is tested on the problem of a compressible fluid flow through a blade cascade with variable blade profiles and Reynolds numbers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/GA21-31457S" target="_blank" >GA21-31457S: Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Applied Mechanics
ISSN
1758-8251
e-ISSN
1758-826X
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
SG - SINGAPORE
Number of pages
20
Pages from-to
1-20
UT code for WoS article
000923377600001
EID of the result in the Scopus database
2-s2.0-85147495139