All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968210" target="_blank" >RIV/49777513:23520/23:43968210 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.worldscientific.com/doi/abs/10.1142/S1758825123500187" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1758825123500187</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S1758825123500187" target="_blank" >10.1142/S1758825123500187</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization

  • Original language description

    This paper deals with flow field prediction in a blade cascade using the convolution neural network. The convolutional neural network (CNN) predicts density, pressure and velocity fields based on the given geometry. The blade cascade is modeled as a single interblade channel with periodic boundary conditions. In this paper, an algorithm that enforces periodic boundary conditions onto the CNN is presented. The main target of this study is to parametrize the CNN model depending on the Reynolds number. A new parametrization approach based on a so-called hypernetwork is employed for this purpose. The idea of this approach is that when the Reynolds number is modified, the hypernetwork modifies the weights of the CNN in such a way that it produces flow fields corresponding to that particular Reynolds number. The concept of the hypernetwork-based parametrization is tested on the problem of a compressible fluid flow through a blade cascade with variable blade profiles and Reynolds numbers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20302 - Applied mechanics

Result continuities

  • Project

    <a href="/en/project/GA21-31457S" target="_blank" >GA21-31457S: Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Applied Mechanics

  • ISSN

    1758-8251

  • e-ISSN

    1758-826X

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    20

  • Pages from-to

    1-20

  • UT code for WoS article

    000923377600001

  • EID of the result in the Scopus database

    2-s2.0-85147495139