All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamilton‐connected {claw, bull}‐free graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43966188" target="_blank" >RIV/49777513:23520/23:43966188 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/jgt.22861" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/jgt.22861</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22861" target="_blank" >10.1002/jgt.22861</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamilton‐connected {claw, bull}‐free graphs

  • Original language description

    The generalized bull is the graph B(i,j) obtained by attaching endvertices of two disjoint paths of lengths i, j to two vertices of a triangle. We prove that every 3‐connected {K(1,3), X}‐free graph, where X ∈ {B(1,6), B(2,5),B(3,4)}, is Hamilton‐connected. The results are sharp andcomplete the characterization of forbidden induced bulls implying Hamilton‐connectedness of a 3‐connected {claw, bull}‐free graph.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

    1097-0118

  • Volume of the periodical

    102

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    128-153

  • UT code for WoS article

    000837480500001

  • EID of the result in the Scopus database

    2-s2.0-85135590970