All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamilton‐connected {claw, net}‐free graphs, II

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968316" target="_blank" >RIV/49777513:23520/23:43968316 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/jgt.22907" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/jgt.22907</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22907" target="_blank" >10.1002/jgt.22907</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamilton‐connected {claw, net}‐free graphs, II

  • Original language description

    In the first one in this series of two papers, we have proved that every 3‐connected {K(1,3), N(1,3,3)}‐free graph is Hamilton‐connected. In this paper, we continue in this direction by proving that every 3‐connected {K(1,3), X}‐free graph, where X ∈ {N(1,1,5), N(2,2,3)}, is Hamilton‐connected (where N(i,j,k) is the graph obtained by attaching endvertices of three paths of lengths i, j, k to a triangle). This together with a previous result of other authors completes the characterization of forbidden induced generalized nets implying Hamilton-connectedness of a 3‐connected claw‐free graph. We also discuss remaining open cases in a full characterization of connected graphs X such that every 3‐connected {K(1,3), X}‐free graph is Hamilton‐connected.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

    1097-0118

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    119-138

  • UT code for WoS article

    000881740300001

  • EID of the result in the Scopus database

    2-s2.0-85141985587