On S-packing Colourings of Distance Graph D(1,t) and D(1,2,t)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968498" target="_blank" >RIV/49777513:23520/23:43968498 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0096300323000243" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0096300323000243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2023.127855" target="_blank" >10.1016/j.amc.2023.127855</a>
Alternative languages
Result language
angličtina
Original language name
On S-packing Colourings of Distance Graph D(1,t) and D(1,2,t)
Original language description
For a non-decreasing sequence of positive integers S = (s_1, s_2 , ...), the S-packing chromatic number x_S(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into subsets X_i, i in {1, 2, ... , k}, where vertices in X_i are pairwise at distance greater than s_i. By an infinite distance graph with distance set D we mean a graph with vertex set Z in which two vertices i, j are adjacent whenever |i - j| in D . In this paper we investigate the S-packing chromatic number of infinite distance graphs with distance set D = {1, t} , t > 2 , and D = {1, 2, t} , t > 3 , for sequences S having all elements from {1, 2}.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
1873-5649
Volume of the periodical
447
Issue of the periodical within the volume
JUN 15 2023
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000950762900001
EID of the result in the Scopus database
2-s2.0-85149318099