Low-temperature reactive high-power impulse magnetron sputtering of high-performance thermochromic VO2-based coatings for energy-saving smart windows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969318" target="_blank" >RIV/49777513:23520/23:43969318 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Low-temperature reactive high-power impulse magnetron sputtering of high-performance thermochromic VO2-based coatings for energy-saving smart windows
Original language description
Vanadium dioxide (VO2) exhibits a reversible phase transition from a low-temperature monoclinic VO2 (M1) semiconducting phase to a high-temperature tetragonal VO2 (R) metallic phase at a transition temperature of approximately 68 °C for the bulk material. The automatic response to temperature and the abrupt decrease of infrared transmittance without attenuation of luminous transmittance in the metallic state make VO2-based coatings a promising candidate for thermochromic smart windows reducing the energy consumption of buildings.To meet the requirements for large-scale implementation on building glass, VO2-based coatings should satisfy the following strict criteria simultaneously: a deposition temperature close to 300 °C, a transition temperature close to 25 °C, an integral luminous transmittance Tlum > 60 %, a modulation of the solar energy transmittance ΔTsol > 10 %, long-term environmental stability, and a more appealing color than yellowish or brownish colors in transmission.The paper deals with a scalable sputter deposition technique for the preparation of strongly thermochromic YSZ/W-doped VO2/YSZ coatings on standard soda-lime glass at a relatively low substrate surface temperature (350 °C) and without any substrate bias voltage. The W-doped VO2 layers were deposited using a controlled reactive deep oscillation magnetron sputtering of a V–W target while the antireflection Y-stabilized ZrO2 (YSZ) layers were deposited using a controlled reactive standard high-power impulse magnetron sputtering of a Zr–Y target. The fundamental principles of this technique and the structure and optical properties of the thermochromic coatings are presented. The coatings exhibit a transition temperature of 33–35 °C at Tlum = 64.5 % and ΔTsol = 7.8 % for a V0.986W0.014O2 thickness of 37 nm, and Tlum = 46.1 % and ΔTsol = 13.2 % for a V0.986W0.014O2 thickness of 67 nm. Such a combination of properties and relatively low deposition temperature has not yet been published by other teams for thermochromic VO2-based coatings prepared by a scalable technique.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20506 - Coating and films
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů