All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low-temperature reactive high-power impulse magnetron sputtering of high-performance thermochromic VO2-based coatings for energy-saving smart windows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969318" target="_blank" >RIV/49777513:23520/23:43969318 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low-temperature reactive high-power impulse magnetron sputtering of high-performance thermochromic VO2-based coatings for energy-saving smart windows

  • Original language description

    Vanadium dioxide (VO2) exhibits a reversible phase transition from a low-temperature monoclinic VO2 (M1) semiconducting phase to a high-temperature tetragonal VO2 (R) metallic phase at a transition temperature of approximately 68 °C for the bulk material. The automatic response to temperature and the abrupt decrease of infrared transmittance without attenuation of luminous transmittance in the metallic state make VO2-based coatings a promising candidate for thermochromic smart windows reducing the energy consumption of buildings.To meet the requirements for large-scale implementation on building glass, VO2-based coatings should satisfy the following strict criteria simultaneously: a deposition temperature close to 300 °C, a transition temperature close to 25 °C, an integral luminous transmittance Tlum &gt; 60 %, a modulation of the solar energy transmittance ΔTsol &gt; 10 %, long-term environmental stability, and a more appealing color than yellowish or brownish colors in transmission.The paper deals with a scalable sputter deposition technique for the preparation of strongly thermochromic YSZ/W-doped VO2/YSZ coatings on standard soda-lime glass at a relatively low substrate surface temperature (350 °C) and without any substrate bias voltage. The W-doped VO2 layers were deposited using a controlled reactive deep oscillation magnetron sputtering of a V–W target while the antireflection Y-stabilized ZrO2 (YSZ) layers were deposited using a controlled reactive standard high-power impulse magnetron sputtering of a Zr–Y target. The fundamental principles of this technique and the structure and optical properties of the thermochromic coatings are presented. The coatings exhibit a transition temperature of 33–35 °C at Tlum = 64.5 % and ΔTsol = 7.8 % for a V0.986W0.014O2 thickness of 37 nm, and Tlum = 46.1 % and ΔTsol = 13.2 % for a V0.986W0.014O2 thickness of 67 nm. Such a combination of properties and relatively low deposition temperature has not yet been published by other teams for thermochromic VO2-based coatings prepared by a scalable technique.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů