All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of Efficient Point-Mass Filter for Linear and Nonlinear Dynamic Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969670" target="_blank" >RIV/49777513:23520/23:43969670 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/LCSYS.2023.3283555" target="_blank" >https://doi.org/10.1109/LCSYS.2023.3283555</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LCSYS.2023.3283555" target="_blank" >10.1109/LCSYS.2023.3283555</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of Efficient Point-Mass Filter for Linear and Nonlinear Dynamic Models

  • Original language description

    his letter deals with the state estimation of nonlinear stochastic dynamic systems in the Bayesian framework. The emphasis is laid on the numerical solution to the Chapman-Kolmogorov equation by the widely-used point-mass method. It is shown, that the standard prediction step of the point-mass filter can be decomposed into two parts; advection and diffusion solution. This decomposition allows application of the fast Fourier transform, which speeds up the prediction step by several orders of magnitude making the point-mass filter attractive even for higher dimensional models. The proposed efficient point-mass filter is illustrated in a numerical simulation with available source codes and is compared with the particle filter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Control Systems Letters

  • ISSN

    2475-1456

  • e-ISSN

    2475-1456

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    2005-2010

  • UT code for WoS article

    001017367300015

  • EID of the result in the Scopus database

    2-s2.0-85161546813