All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounding Box Detection in Visual Tracking: Measurement Model Parameter Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969676" target="_blank" >RIV/49777513:23520/23:43969676 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION52260.2023.10224194" target="_blank" >https://doi.org/10.23919/FUSION52260.2023.10224194</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION52260.2023.10224194" target="_blank" >10.23919/FUSION52260.2023.10224194</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounding Box Detection in Visual Tracking: Measurement Model Parameter Estimation

  • Original language description

    Common visual tracking algorithms make use of measurement models whose parameters need to be specified. These are, namely, measurement noise covariance related to spatial error of detections provided by a visual detection algorithm, probability of detection, and expected number of clutter detections. The measurement model parameters are often hand selected, using no data-based knowledge. This paper proposes a technique to estimate the parameters by reliably associating detections to annotations in each video frame. The technique is verified on the publicly available MOT-17 dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2023 26th International Conference on Information Fusion, FUSION 2023

  • ISBN

    979-8-89034-485-4

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Charleston, Jižní Karolína, USA

  • Event location

    Charleston, Jižní Karolína, USA

  • Event date

    Jun 27, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article