All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate Bayesian State Estimation for Active Fault Diagnosis of Large-Scale Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969682" target="_blank" >RIV/49777513:23520/23:43969682 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION52260.2023.10224216" target="_blank" >https://doi.org/10.23919/FUSION52260.2023.10224216</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION52260.2023.10224216" target="_blank" >10.23919/FUSION52260.2023.10224216</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate Bayesian State Estimation for Active Fault Diagnosis of Large-Scale Systems

  • Original language description

    Active fault diagnosis (AFD) of stochastic large-scale systems in multiple model framework involves two stages: offline and online. In the offline stage, an excitation input generator is designed based on a Bellman function. In the online stage, the generator is utilized together with an estimator of the model indices. A similar estimator is used in the offline stage for the Bellman function calculation using the value iteration technique. However, due to the high dimensions of information states of the associated perfect state information problem, the estimator in the offline stage must involve approximations. The paper provides the relations for the estimate calculation using the Bayesian recursive relations, proposes four algorithms, and studies effects of such approximations on the AFD decisions. In particular, the quality of the model index estimates is analyzed using a power network model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2023 26th International Conference on Information Fusion, FUSION 2023

  • ISBN

    979-8-89034-485-4

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Charleston, Jižní Karolína, USA

  • Event location

    Charleston, Jižní Karolína, USA

  • Event date

    Jun 27, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article