All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical Active Fault Diagnosis for Stochastic Large Scale Systems with Coupled Faults

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959774" target="_blank" >RIV/49777513:23520/20:43959774 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION45008.2020.9190304" target="_blank" >https://doi.org/10.23919/FUSION45008.2020.9190304</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION45008.2020.9190304" target="_blank" >10.23919/FUSION45008.2020.9190304</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical Active Fault Diagnosis for Stochastic Large Scale Systems with Coupled Faults

  • Original language description

    The paper deals with the active fault diagnosis of large scale stochastic systems with faults modeled as mutually dependent Markov chains. The system is described by multiple models representing fault-free and faulty behavior of the system. The aim of the active fault detector in addition to detecting the faults is to excite the system to improve the detection quality. The algorithm consists of two stages: the off-line design of the Bellman function providing the optimal excitation and the on-line estimation, which generates the decisions and selects the optimal excitation according to the Bellman function. In particular, the paper focuses on the online estimation and proposes an algorithm in the hierarchical architecture. The local nodes estimate the continuous state of the subsystems, select the optimal excitations and send local likelihoods to the central node. The central node generates the decisions and submits the respective model probabilities to the local nodes. The performance of the proposed algorithm is validated using a simple numerical example.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION)

  • ISBN

    978-0-578-64709-8

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Rustenburg

  • Event location

    Rustenburg, Jihoafrická republika

  • Event date

    Jul 6, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article