All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Active Fault Detection Based on Tensor Train Decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973064" target="_blank" >RIV/49777513:23520/24:43973064 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ifacol.2024.07.297" target="_blank" >https://doi.org/10.1016/j.ifacol.2024.07.297</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2024.07.297" target="_blank" >10.1016/j.ifacol.2024.07.297</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Active Fault Detection Based on Tensor Train Decomposition

  • Original language description

    The paper deals with active fault detection of stochastic systems based on tensor train representation of the Bellman function. The faulty and faulty-free behavior of the system is represented using multiple models. The active fault detection problem is treated as an optimal design problem similar to optimal stochastic control. The original problem is reformulated as a perfect state information problem by introducing an information state that contains statistics computed by a state estimator. The Bellman function is computed using the value iteration algorithm over a rectilinear grid set up in the information state space. Within the value iteration algorithm, the Bellman function is represented using the tensor train decomposition, and considerable attention is devoted to designing a rectilinear grid that respects the constraints placed on the elements of the information state.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFAC-PapersOnLine

  • ISBN

  • ISSN

    2405-8971

  • e-ISSN

    2405-8963

  • Number of pages

    6

  • Pages from-to

    676-681

  • Publisher name

    Elsevier

  • Place of publication

    Ferrara

  • Event location

    Ferrara, Italy

  • Event date

    Jun 4, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001296047100114