Active Fault Detection Based on Tensor Train Decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973064" target="_blank" >RIV/49777513:23520/24:43973064 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ifacol.2024.07.297" target="_blank" >https://doi.org/10.1016/j.ifacol.2024.07.297</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2024.07.297" target="_blank" >10.1016/j.ifacol.2024.07.297</a>
Alternative languages
Result language
angličtina
Original language name
Active Fault Detection Based on Tensor Train Decomposition
Original language description
The paper deals with active fault detection of stochastic systems based on tensor train representation of the Bellman function. The faulty and faulty-free behavior of the system is represented using multiple models. The active fault detection problem is treated as an optimal design problem similar to optimal stochastic control. The original problem is reformulated as a perfect state information problem by introducing an information state that contains statistics computed by a state estimator. The Bellman function is computed using the value iteration algorithm over a rectilinear grid set up in the information state space. Within the value iteration algorithm, the Bellman function is represented using the tensor train decomposition, and considerable attention is devoted to designing a rectilinear grid that respects the constraints placed on the elements of the information state.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IFAC-PapersOnLine
ISBN
—
ISSN
2405-8971
e-ISSN
2405-8963
Number of pages
6
Pages from-to
676-681
Publisher name
Elsevier
Place of publication
Ferrara
Event location
Ferrara, Italy
Event date
Jun 4, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001296047100114