All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploring the Relationship between Dataset Size and Image Captioning Model Performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969948" target="_blank" >RIV/49777513:23520/23:43969948 - isvavai.cz</a>

  • Result on the web

    <a href="http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf" target="_blank" >http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploring the Relationship between Dataset Size and Image Captioning Model Performance

  • Original language description

    Image captioning is a deep learning task, which goal is to automatically generate textual description of an input image. It is a complex task that requires identifying and interpreting visual information and generating grammatically correct and fluent sentences. Because different individuals may consider various aspects of an image important, there isn’t any single correct caption. This means that there is no ideal evaluation metric for measuring caption quality, as different metrics may better evaluate different attributes of the caption. Image captioning models, just like other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů