Examining Vortex-Induced Vibration through Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970426" target="_blank" >RIV/49777513:23520/23:43970426 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11025/54830" target="_blank" >http://hdl.handle.net/11025/54830</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Examining Vortex-Induced Vibration through Convolutional Neural Networks
Original language description
This paper aims to apply CNNs to fluid-structure interaction (FSI) problems. It is worth noting that most prior research utilizing neural networks for fluid flow prediction assumed stationary boundaries. However, for FSI applications, CNNs must predict flow fields with moving boundaries. To address this challenge, we have designed and trained a CNN specifically tailored to predict unsteady, incompressible fluid flow with moving boundaries.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/GA21-31457S" target="_blank" >GA21-31457S: Fast flow-field prediction using deep neural networks for solving fluid-structure interaction problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů