Block preconditioning with approximate inner solvers for incompressible flow problems based on IgA discretization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43971350" target="_blank" >RIV/49777513:23520/23:43971350 - isvavai.cz</a>
Result on the web
<a href="https://www.ugn.cas.cz/event/2023/sna/files/sna23-sbornik.pdf" target="_blank" >https://www.ugn.cas.cz/event/2023/sna/files/sna23-sbornik.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Block preconditioning with approximate inner solvers for incompressible flow problems based on IgA discretization
Original language description
We focus on effcient numerical solution of the steady incompressible Navier-Stokes equations (NSE) using our in-house solver based on the isogeometric analysis (IgA) approach. The B-spline/NURBS discretization basis has several speciffic properties different from standard finite element basis, most importantly a higher interelement continuity leading to denser matrices. Our aim is also to developed efficient solver of these systems by a preconditioned Krylov subspace method. In this contribution, we focus on efficient approximate solvers suitable for solving subsystems within several state-of-the-art block preconditioners.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/TK04020250" target="_blank" >TK04020250: Modern methods for shape optimization of Francis turbines</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů