All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heimatkunde: Dataset for Multi-Modal Historical Document Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971565" target="_blank" >RIV/49777513:23520/24:43971565 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0012428500003636" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0012428500003636</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0012428500003636" target="_blank" >10.5220/0012428500003636</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heimatkunde: Dataset for Multi-Modal Historical Document Analysis

  • Original language description

    This paper introduces a novel Heimatkunde dataset comprising printed documents in German, specifically designedfor evaluating layout analysis methods with a focus on multi-modality. The dataset is openly accessiblefor research purposes. The study further presents baseline results for instance segmentation and multi-modalelement classification. Three advanced models, Mask R-CNN, YOLOv8, and LayoutLMv3, are employed forinstance segmentation, while a fusion-based model integrating BERT and various vision Transformers are proposedfor multi-modal classification. Experimental findings reveal that optimal bounding box segmentation isachieved with YOLOv8 using an input image size of 1280 pixels, and the best segmentation mask is producedby LayoutLMv3 with PubLayNet weights. Moreover, the research demonstrates superior multi-modal classificationresults using BERT for textual and Vision Transformer for image modalities. The study concludesby suggesting the integration of the proposed models into the historical Porta fontium portal to enhance theinformation retrieval from historical data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 16th International Conference on Agents and Artificial Intelligence

  • ISBN

    978-989-758-680-4

  • ISSN

    2184-3589

  • e-ISSN

    2184-433X

  • Number of pages

    7

  • Pages from-to

    995-1001

  • Publisher name

    ScitePress

  • Place of publication

    Setúbal

  • Event location

    Řím, Itálie

  • Event date

    Feb 24, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article