Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972786" target="_blank" >RIV/49777513:23520/24:43972786 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s12346-023-00904-x" target="_blank" >https://link.springer.com/article/10.1007/s12346-023-00904-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12346-023-00904-x" target="_blank" >10.1007/s12346-023-00904-x</a>
Alternative languages
Result language
angličtina
Original language name
Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
Original language description
In this paper we provide a complete characterization of a class of unbounded asymmetric stationary solutions of the lattice Nagumo equations. We show that for any bistable cubic nonlinearity and arbitrary diffusion rate there exists a two-parametric set of equivalence classes of generally asymmetric stationary solutions which diverge to infinity. Our main tool is an iterative mirroring technique which could be applicable to other problems related to lattice equations. Finally, we generalize the result for a broad class of reaction functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-18261S" target="_blank" >GA22-18261S: Nonlinear problems with non-standard diffusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Qualitative Theory of Dynamical Systems
ISSN
1575-5460
e-ISSN
1662-3592
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
—
UT code for WoS article
001127256300003
EID of the result in the Scopus database
2-s2.0-85179913719