Mirroring in lattice equations and a related functional equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43974867" target="_blank" >RIV/49777513:23520/24:43974867 - isvavai.cz</a>
Result on the web
<a href="https://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11174" target="_blank" >https://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11174</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2024.1.65" target="_blank" >10.14232/ejqtde.2024.1.65</a>
Alternative languages
Result language
angličtina
Original language name
Mirroring in lattice equations and a related functional equation
Original language description
We use a functional form of the mirroring technique to fully characterize equivalence classes of unbounded stationary solutions of lattice reaction-diffusion equations with eventually negative and decreasing nonlinearities. We show that solutions which connect a stable fixed point of the nonlinearity with infinity can be characterized by a single parameter from a bounded interval. Within a two-dimensional parametric space, these solutions form a boundary to an existence region of solutions which diverge in both directions. Additionally, we reveal a natural relationship of lattice equations with an interesting functional equation which involves an unknown function and its inverse.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-18261S" target="_blank" >GA22-18261S: Nonlinear problems with non-standard diffusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
1417-3875
Volume of the periodical
Neuveden
Issue of the periodical within the volume
65
Country of publishing house
HU - HUNGARY
Number of pages
21
Pages from-to
1-21
UT code for WoS article
001397038300001
EID of the result in the Scopus database
2-s2.0-85211080468