Unveiling the Effectiveness of NLP-based DL Methods for Urdu Text Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972891" target="_blank" >RIV/49777513:23520/24:43972891 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-75329-9_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-75329-9_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-75329-9_12" target="_blank" >10.1007/978-3-031-75329-9_12</a>
Alternative languages
Result language
angličtina
Original language name
Unveiling the Effectiveness of NLP-based DL Methods for Urdu Text Analysis
Original language description
The analysis of text data has become a significant challenge while its size is gradually increasing in massive amounts. Various textual analysis methods exist, dealing with different processing styles due to multiple data types, mainly for English. Therefore, the other low-resource languages are difficult to process due to the unavailability of intelligent methods. Similarly, Urdu, as a low-resource language, requires effective methods based on machine learning or deep learning mechanisms. Our study has identified the rarely used pure Urdu text dataset, an effective combination of embeddings, and the best combination of hyperparameters for DL methods trained on that dataset. According to the evaluation results, our study has also determined the best methods regarding embeddings, hyperparameters, and overall performance. Moreover, combining pre-trained BERT embeddings with the fine-tuned BiLSTM and BERT was the best method to cope with Urdu as a low-resource language. As per the findings, our study recommends the pre-trained embedding models and hyperparameters settings for Urdu text classification analysis.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LM2018140" target="_blank" >LM2018140: e-Infrastructure CZ</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Systems and Technological Advances for Sustainable Development. Lecture Notes in Information Systems and Organisation
ISBN
978-3-031-75328-2
ISSN
2195-4968
e-ISSN
2195-4976
Number of pages
12
Pages from-to
102-113
Publisher name
Springer Cham
Place of publication
Cham
Event location
Košice
Event date
May 27, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—