Data-Augmented Numerical Integration in State Prediction: Rule Selection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973048" target="_blank" >RIV/49777513:23520/24:43973048 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ifacol.2024.08.518" target="_blank" >https://doi.org/10.1016/j.ifacol.2024.08.518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2024.08.518" target="_blank" >10.1016/j.ifacol.2024.08.518</a>
Alternative languages
Result language
angličtina
Original language name
Data-Augmented Numerical Integration in State Prediction: Rule Selection
Original language description
This paper deals with the state prediction of nonlinear stochastic dynamic systems. The emphasis is laid on a solution to the integral Chapman-Kolmogorov equation by a deterministic-integration-rule-based point-mass method. A novel concept of reliable data-augmented, i.e., mathematics- and data-informed, integration rule is developed to enhance the point-mass state predictor, where the trained neural network (representing data contribution) is used for the selection of the best integration rule from a set of available rules (representing mathematics contribution). The proposed approach combining the best properties of the standard mathematics-informed and novel data-informed rules is thoroughly discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IFAC-PapersOnLine
ISBN
—
ISSN
2405-8971
e-ISSN
2405-8963
Number of pages
6
Pages from-to
139-144
Publisher name
Elsevier
Place of publication
Amsterdam
Event location
Boston, USA
Event date
Jul 17, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001316057100024