All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On fusion of probability density functions using tensor train decomposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973067" target="_blank" >RIV/49777513:23520/24:43973067 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION59988.2024.10706475" target="_blank" >https://doi.org/10.23919/FUSION59988.2024.10706475</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION59988.2024.10706475" target="_blank" >10.23919/FUSION59988.2024.10706475</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On fusion of probability density functions using tensor train decomposition

  • Original language description

    Non-linear filters consider probability density functions in various non-parametric representations. They often suffer from the curse of dimensionality. Computation of weights over a grid of points becomes infeasible even for low dimensions. Filters processing data produced in different sensor nodes provide their own probability densities. Combination of such densities is desired. A favourite paradigm is to construct a fused density as a weighted arithmetic or geometric mean of the individual densities. This paper prospects the fusion for tensor train representation of densities produced by point-mass filters. In this representation, the weights are neither evaluated for a whole grid nor fully stored in the memory of the filters. Aspects of tensor-train-based fusion are discussed, such as computation of auxiliary characteristics and experience with numerical examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 27th International Conference on Information Fusion (FUSION)

  • ISBN

    978-1-73774-976-9

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Venice

  • Event location

    Venice, Italy

  • Event date

    Jul 7, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001334560000203