Homograph Disambiguation with Text-to-Text Transfer Transformer
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973188" target="_blank" >RIV/49777513:23520/24:43973188 - isvavai.cz</a>
Result on the web
<a href="https://www.isca-archive.org/interspeech_2024/rezackova24_interspeech.pdf" target="_blank" >https://www.isca-archive.org/interspeech_2024/rezackova24_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2024-949" target="_blank" >10.21437/Interspeech.2024-949</a>
Alternative languages
Result language
angličtina
Original language name
Homograph Disambiguation with Text-to-Text Transfer Transformer
Original language description
In recent years, the Text-to-Text Transfer Transformer (T5) neural model has proved very powerful in many text-to-text tasks, including text normalization and grapheme-to-phoneme conversion. In the presented paper, we fine-tuned the T5 model for the task of homograph disambiguation, which is one of the essential components of text-to-speech (TTS) systems. To compare our results to those of other studies, we used an online dataset of US English homographs called Wikipedia Homograph Data. We present our results, which outperformed the previously published single-model approaches. We also focus on more detailed error analysis, model performance on different types of homographs, and the impact of training set size on homograph disambiguation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA22-27800S" target="_blank" >GA22-27800S: Transformers of multiple modalities for more natural spoken dialog</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Interspeech 2024
ISBN
—
ISSN
2308-457X
e-ISSN
2958-1796
Number of pages
5
Pages from-to
2785-2789
Publisher name
International Speech Communication Association (ISCA)
Place of publication
Kos
Event location
Kos, Řecko
Event date
Sep 1, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001331850102186