All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electronic structure of the dilute magnetic semiconductor G a 1- x M n x P from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43952837" target="_blank" >RIV/49777513:23640/18:43952837 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevB.97.155149" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.97.155149</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.97.155149" target="_blank" >10.1103/PhysRevB.97.155149</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electronic structure of the dilute magnetic semiconductor G a 1- x M n x P from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

  • Original language description

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) Ga0.98Mn0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimentaldata,aswellastheoreticalcalculations,tounderstandtheroleoftheMndopantintheemergenceof ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between Ga0.98Mn0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The Ga0.98Mn0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of Ga0.97Mn0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012)], demonstrating the strong similarity between these two materials. The Mn 2p and 3s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    "NESTRÁNKOVÁNO"

  • UT code for WoS article

    000430545100003

  • EID of the result in the Scopus database

    2-s2.0-85045911256