Co-existence of magnetic phases in two-dimensional MXene
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F20%3A43958574" target="_blank" >RIV/49777513:23640/20:43958574 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.mtchem.2020.100271" target="_blank" >https://doi.org/10.1016/j.mtchem.2020.100271</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtchem.2020.100271" target="_blank" >10.1016/j.mtchem.2020.100271</a>
Alternative languages
Result language
angličtina
Original language name
Co-existence of magnetic phases in two-dimensional MXene
Original language description
This study reports first synthesis of MXene-derived co-existing magnetic phases. New family of twodimensional (2D) materials such as Ti3C2 namely MXene, having transition metal forming hexagonal structure with carbon atoms have attracted tremendous interest now a days. We have reported structural, optical and magnetic properties of un-doped and La-doped Ti3C2Tx MXene, synthesized using coprecipitation method. The lattice parameter (LP) calculated for La-MXene are a= 5.36 Å, c= 18.3 Å which are slightly different from the parent un-doped MXene (a= 5.35 Å, c= 19.2 Å), calculated from X-ray diffraction data. The doping of La3+ ions shrinks Ti3C2Tx layers perpendicular to the planes. The band gap for MXene is calculated to be 1.06 eV which is increased to 1.44 eV after doping of La3+ ion that shows its good semiconducting nature. The experimental results and density functional theory (DFT) calculations for magnetic properties of both the samples have been presented and discussed, indicating the coexistence of ferromagnetic-antiferromagnetic phases. The results presented here are novel and is first report on co-existence of magnetic properties of 2D carbides for potential applications in twodimensional spintronics.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials Today Chemistry
ISSN
2468-5194
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
June 2020
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
"NESTRÁNKOVÁNO"
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85082865518