All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental and Computational Analysis of MnO2@V2C-MXene for Enhanced Energy Storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43964070" target="_blank" >RIV/49777513:23640/21:43964070 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/" target="_blank" >https://doi.org/10.3390/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano11071707" target="_blank" >10.3390/nano11071707</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental and Computational Analysis of MnO2@V2C-MXene for Enhanced Energy Storage

  • Original language description

    Herein, we studied the novel and emerging group of 2D materials namely MXene along with its nanocomposites. This work entails detailed experimental as well as computational study of the electrochemical behavior of vanadium carbide (V2CTx) MXene and MnO2-V2C nanocomposite with varying percentages of MnO2. A specific capacitance of 551.8 F/g was achieved for MnO2-V2C nanocomposite in 1 M KOH electrolyte solution, which is more than two times higher than the gravimetric capacitance of 196.5 F/g obtained for V2C. The cyclic stability achieved for the MnO2- V2C nanocomposite resulted in a retentivity of 96.5% until 5000 cycles. The c-lattice parameter achieved for MXene is 22.6 Å, which was 13.01 Å for MAX phase. The nanocomposite resulted in a c-lattice parameter of 27.2 Å, which showed that the spatial distance between the MXene layers was efficiently obtained. The method of wet etching was used for the preparation of pristine MXene and the liquid phase precipitation method was opted for the synthesis of the MnO2-V2C nanocomposite. Density functional theory calculation was exercised so as to complement the experimental results and to understand the microscopic details, such as structure stability and electronic structure. The current report presents a comprehensive experimental and computational study on 2D MXenes for future energy storage applications

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000676526000001

  • EID of the result in the Scopus database

    2-s2.0-85108831405