Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972153" target="_blank" >RIV/49777513:23640/24:43972153 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11025/57980" target="_blank" >http://hdl.handle.net/11025/57980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2024.150403" target="_blank" >10.1016/j.cej.2024.150403</a>
Alternative languages
Result language
angličtina
Original language name
Engineering multifunctional dynamic hydrogel for biomedical and tissue regenerative applications
Original language description
Hydrogels have emerged in various biomedical applications, including tissue engineering and medical devices, due to their ability to imitate the natural extracellular matrix (ECM) of tissues. However, conventional static hydrogels lack the ability to dynamically respond to changes in their surroundings to withstand the robust changes of the biophysical microenvironment and to trigger on-demand functionality such as drug release and mechanical change. In contrast, multifunctional dynamic hydrogels can adapt and respond to external stimuli and have drawn great attention in recent studies. It is realized that the integration of nanomaterials into dynamic hydrogels provides numerous functionalities for a great variety of biomedical applications that cannot be achieved by conventional hydrogels. This review article provides a comprehensive overview of recent advances in designing and fabricating dynamic hydrogels for biomedical applications. We describe different types of dynamic hydrogels based on breakable and reversible covalent bonds as well as noncovalent interactions. These mechanisms are described in detail as a useful reference for designing crosslinking strategies that strongly influence the mechanical properties of the hydrogels. We also discuss the use of dynamic hydrogels and their potential benefits. This review further explores different biomedical applications of dynamic nanocomposite hydrogels, including their use in drug delivery, tissue engineering, bioadhesives, wound healing, cancer treatment, and mechanistic study, as well as multiple-scale biomedical applications. Finally, we discuss the challenges and future perspectives of dynamic hydrogels in the field of biomedical engineering, including the integration of diverse technologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/EH22_008%2F0004634" target="_blank" >EH22_008/0004634: Mechanical engineering of biological and bio-inspired systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Volume of the periodical
487
Issue of the periodical within the volume
MAY 1 2024
Country of publishing house
CH - SWITZERLAND
Number of pages
38
Pages from-to
—
UT code for WoS article
001223394200001
EID of the result in the Scopus database
2-s2.0-85188678874