NOTES ON SYMMETRIC CONFORMAL GEOMETRIES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F15%3A43890349" target="_blank" >RIV/60076658:12310/15:43890349 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/15:00081627
Result on the web
<a href="http://dml.cz/bitstream/handle/10338.dmlcz/144771/ArchMathRetro_051-2015-5_5.pdf" target="_blank" >http://dml.cz/bitstream/handle/10338.dmlcz/144771/ArchMathRetro_051-2015-5_5.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
NOTES ON SYMMETRIC CONFORMAL GEOMETRIES
Original language description
In this article, we summarize the results on symmetric conformal geometries. We review the results following from the general theory of symmetric parabolic geometries and prove several new results for symmetric conformal geometries. In particular, we show that each symmetric conformal geometry is either locally flat or covered by a pseudo-Riemannian symmetric space, where the covering is a conformal map. We construct examples of locally flat symmetric conformal geometries that are not pseudo-Riemannian symmetric spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
2015
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
"287?296"
UT code for WoS article
—
EID of the result in the Scopus database
—