On Symmetric CR Geometries of Hypersurface Type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43899444" target="_blank" >RIV/60076658:12310/19:43899444 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/19:00108221
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs12220-018-00110-1.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs12220-018-00110-1.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-018-00110-1" target="_blank" >10.1007/s12220-018-00110-1</a>
Alternative languages
Result language
angličtina
Original language name
On Symmetric CR Geometries of Hypersurface Type
Original language description
We study non-degenerate CR geometries of hypersurface type that are symmetric in the sense that, at each point, there is a CR transformation reversing the CR distribution at that point. We show that such geometries are either flat or homogeneous. We show that non-flat non-degenerate symmetric CR geometries of hypersurface type are covered by CR geometries with a compatible pseudo-Riemannian metric preserved by all symmetries. We construct examples of simply connected flat non-degenerate symmetric CR geometries of hypersurface type that do not carry a pseudo-Riemannian metric compatible with the symmetries.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometric Analysis
ISSN
1050-6926
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
3135-3159
UT code for WoS article
000488929600007
EID of the result in the Scopus database
2-s2.0-85056087246