SUBMAXIMALLY SYMMETRIC ALMOST QUATERNIONIC STRUCTURES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43897757" target="_blank" >RIV/60076658:12310/18:43897757 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs00031-017-9453-6.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00031-017-9453-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00031-017-9453-6" target="_blank" >10.1007/s00031-017-9453-6</a>
Alternative languages
Result language
angličtina
Original language name
SUBMAXIMALLY SYMMETRIC ALMOST QUATERNIONIC STRUCTURES
Original language description
The symmetry dimension of a geometric structure is the dimension of its symmetry algebra. We investigate symmetries of almost quaternionic structures of quaternionic dimension n. The maximal possible symmetry is realized by the quaternionic projective space a"iP (n) , which is at and has the symmetry algebra of dimension 4n (2) + 8n + 3. For non-flat almost quaternionic manifolds we compute the next biggest (submaximal) symmetry dimension. We show that it is equal to 4n (2) -4n+9 for n > 1 (it is equal to 8 for n = 1). This is realized both by a quaternionic structure (torsion-free) and by an almost quaternionic structure with vanishing quaternionic Weyl curvature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transformation Groups
ISSN
1083-4362
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
723-741
UT code for WoS article
000440820400005
EID of the result in the Scopus database
2-s2.0-85033434065