Poincare-Friedrichs type constants for operators involving grad, curl, and div: Theory and numerical experiments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901172" target="_blank" >RIV/60076658:12310/20:43901172 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/20:00522489
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0898122120300110?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0898122120300110?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2020.01.004" target="_blank" >10.1016/j.camwa.2020.01.004</a>
Alternative languages
Result language
angličtina
Original language name
Poincare-Friedrichs type constants for operators involving grad, curl, and div: Theory and numerical experiments
Original language description
We give some theoretical as well as computational results on Laplace and Maxwell constants, i.e., on the smallest constants c(n) > 0 arising in estimates of the form vertical bar u vertical bar(L2(Omega)) <= c(0)vertical bar grad u vertical bar(L2(Omega)), vertical bar E vertical bar(L2(Omega)) <= c(1)vertical bar curl E vertical bar(L2(Omega)), vertical bar H vertical bar(L2(Omega)) <= c(2)vertical bar div H vertical bar(L2(Omega)). Besides the classical de Rham complex we investigate the complex of elasticity and the complex related to the biharmonic equation and general relativity as well using the general functional analytical concept of Hilbert complexes. We consider mixed boundary conditions and bounded Lipschitz domains of arbitrary topology. Our numerical aspects are presented by examples for the de Rham complex in 2D and 3D which not only confirm our theoretical findings but also indicate some interesting conjectures. (C) 2020 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GF19-29646L" target="_blank" >GF19-29646L: Large Strain Challenges in Materials Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers & Mathematics with Applications
ISSN
0898-1221
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
41
Pages from-to
3027-3067
UT code for WoS article
000528266300001
EID of the result in the Scopus database
2-s2.0-85078157509