All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Poincare-Friedrichs type constants for operators involving grad, curl, and div: Theory and numerical experiments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901172" target="_blank" >RIV/60076658:12310/20:43901172 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985556:_____/20:00522489

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0898122120300110?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0898122120300110?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2020.01.004" target="_blank" >10.1016/j.camwa.2020.01.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Poincare-Friedrichs type constants for operators involving grad, curl, and div: Theory and numerical experiments

  • Original language description

    We give some theoretical as well as computational results on Laplace and Maxwell constants, i.e., on the smallest constants c(n) &gt; 0 arising in estimates of the form vertical bar u vertical bar(L2(Omega)) &lt;= c(0)vertical bar grad u vertical bar(L2(Omega)), vertical bar E vertical bar(L2(Omega)) &lt;= c(1)vertical bar curl E vertical bar(L2(Omega)), vertical bar H vertical bar(L2(Omega)) &lt;= c(2)vertical bar div H vertical bar(L2(Omega)). Besides the classical de Rham complex we investigate the complex of elasticity and the complex related to the biharmonic equation and general relativity as well using the general functional analytical concept of Hilbert complexes. We consider mixed boundary conditions and bounded Lipschitz domains of arbitrary topology. Our numerical aspects are presented by examples for the de Rham complex in 2D and 3D which not only confirm our theoretical findings but also indicate some interesting conjectures. (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GF19-29646L" target="_blank" >GF19-29646L: Large Strain Challenges in Materials Science</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers &amp; Mathematics with Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Volume of the periodical

    79

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    41

  • Pages from-to

    3027-3067

  • UT code for WoS article

    000528266300001

  • EID of the result in the Scopus database

    2-s2.0-85078157509