NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903939" target="_blank" >RIV/60076658:12310/21:43903939 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/21:00536098
Result on the web
<a href="http://www.aimsciences.org/article/doi/10.3934/dcdss.2020322" target="_blank" >http://www.aimsciences.org/article/doi/10.3934/dcdss.2020322</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdss.2020322" target="_blank" >10.3934/dcdss.2020322</a>
Alternative languages
Result language
angličtina
Original language name
NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
Original language description
We consider metric gradient flows and their discretizations in time and space. We prove an abstract convergence result for time-space discretizations and identify their limits as curves of maximal slope. As an application, we consider a finite element approximation of a quasistatic evolution for viscoelastic von Karman plates [44]. Computational experiments exploiting C1 finite elements are provided, too.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-04301S" target="_blank" >GA17-04301S: Advanced mathematical methods for dissipative evolutionary systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems-Series S
ISSN
1937-1632
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
299-319
UT code for WoS article
000595659200015
EID of the result in the Scopus database
999