On symmetries of a sub-Riemannian structure with growth vector (4,7)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43906524" target="_blank" >RIV/60076658:12310/23:43906524 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/23:00134035
Result on the web
<a href="https://link.springer.com/article/10.1007/s10231-022-01242-6" target="_blank" >https://link.springer.com/article/10.1007/s10231-022-01242-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-022-01242-6" target="_blank" >10.1007/s10231-022-01242-6</a>
Alternative languages
Result language
angličtina
Original language name
On symmetries of a sub-Riemannian structure with growth vector (4,7)
Original language description
We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Volume of the periodical
202
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
293-306
UT code for WoS article
000826261700001
EID of the result in the Scopus database
2-s2.0-85134527728