All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Shortest and straightest geodesics in sub-Riemannian geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017243" target="_blank" >RIV/62690094:18470/20:50017243 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0393044020300954?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0393044020300954?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomphys.2020.103713" target="_blank" >10.1016/j.geomphys.2020.103713</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Shortest and straightest geodesics in sub-Riemannian geometry

  • Original language description

    There are several different, but equivalent definitions of geodesics in a Riemannian manifold, based on two characteristic properties: geodesics as shortest curves and geodesics as straightest curves. They are generalized to sub-Riemannian manifolds, but become non-equivalent. We give an overview of different approaches to the definition, study and generalization of sub-Riemannian geodesics and discuss interrelations between different definitions. For Chaplygin transversally homogeneous sub-Riemannian manifold Q, we prove that straightest geodesics (defined as geodesics of the Schouten partial connection) coincide with shortest geodesics (defined as the projection to Q of integral curves (with trivial initial covector) of the sub-Riemannian Hamiltonian system). This gives a Hamiltonization of Chaplygin systems in non-holonomic mechanics. We consider a class of homogeneous sub-Riemannian manifolds, where straightest geodesics coincide with shortest geodesics, and give a description of all sub-Riemannian symmetric spaces in terms of affine symmetric spaces. (C) 2020 Published by Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of geometry and physics

  • ISSN

    0393-0440

  • e-ISSN

  • Volume of the periodical

    155

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

    "Article Number: 103713"

  • UT code for WoS article

    000551647000003

  • EID of the result in the Scopus database

    2-s2.0-85085325694