All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic vector fields on a Riemannian manifold

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604202" target="_blank" >RIV/61989592:15310/20:73604202 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/1/137/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/1/137/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8010137" target="_blank" >10.3390/math8010137</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic vector fields on a Riemannian manifold

  • Original language description

    A geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in otherworlds have zero acceleration. A generalized geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presense of generalized geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using generalized geodesic vector fields.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    "137-1"-"137-11"

  • UT code for WoS article

    000515730100080

  • EID of the result in the Scopus database

    2-s2.0-85080113550