Geodesic vector fields on a Riemannian manifold
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604202" target="_blank" >RIV/61989592:15310/20:73604202 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/1/137/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/1/137/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8010137" target="_blank" >10.3390/math8010137</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic vector fields on a Riemannian manifold
Original language description
A geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in otherworlds have zero acceleration. A generalized geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presense of generalized geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using generalized geodesic vector fields.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
"137-1"-"137-11"
UT code for WoS article
000515730100080
EID of the result in the Scopus database
2-s2.0-85080113550