All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Response of stable isotopes (82H, 813C, 815N, 818O) of lake water, dissolved organic matter, seston, and zooplankton to an extreme precipitation event

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907301" target="_blank" >RIV/60076658:12310/23:43907301 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S004896972303245X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S004896972303245X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2023.164622" target="_blank" >10.1016/j.scitotenv.2023.164622</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Response of stable isotopes (82H, 813C, 815N, 818O) of lake water, dissolved organic matter, seston, and zooplankton to an extreme precipitation event

  • Original language description

    Lake ecosystems process and cycle organic substrates, thus serving as important bioreactors in the global carbon cycle. Climate change is predicted to increase extreme weather and precipitation events that can flush nutrients and organic matter from soils to streams and lakes. Here we report changes in stable isotopes (82H, 813C, 815N, or 818O) of water, dissolved organic matter (DOM), seston, and zooplankton in a subalpine lake at short time resolution following an extreme precipitation event between early July to mid-August 2021. Water from excess precipitation and runoff remained in the lake epilimnion and coincided with increasing 813C values of seston (-30 %o to -20 %o), due to the input of carbonates and terrestrial organic matter. Particles settled into deeper lake layers after two days and contributed to the uncoupling of C and N cycling as the lake responded to this extreme precipitation event. Following the event, there was an increase in bulk 813C values of zooplankton (from -35 %o to -32 %o). Throughout this study, 813C values of DOM remained stable throughout the water column (-29 %o to -28 %o), while large isotopic fluctuations in DOM 82H (-140 %o to -115 %o) and 818O (+9 %o to +15 %o) values suggested DOM relocation and turnover. Integrating isotope hydrology, ecosystem ecology, and organic geochemistry offers an element-specific, detailed approach to investigating the impact of extreme precipitation events on freshwater ecosystems and particularly aquatic food webs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10617 - Marine biology, freshwater biology, limnology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    891

  • Issue of the periodical within the volume

    SEP 15 2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    001033305600001

  • EID of the result in the Scopus database

    2-s2.0-85161650526