On a 3D Extension of the Simson-Wallace theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F14%3A43888177" target="_blank" >RIV/60076658:12410/14:43888177 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12410/14:43888141
Result on the web
<a href="http://www.heldermann.de/JGG/jggcon.htm" target="_blank" >http://www.heldermann.de/JGG/jggcon.htm</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a 3D Extension of the Simson-Wallace theorem
Original language description
The following 3D extension of the Simson-Wallace theorem is proved by a method which differs from that used in the past (Theorem 1): Let K,L,M,N be orthogonal projections of a point P to the faces BCD, ACD, ABD, and ABC of a tetrahedron ABCD. Then, all points P with the property that the tetrahedron KLMN has a constant volume belong to a cubic surface (1). Next, the main theorem (Theorem 2) is proved which states that also the converse of Theorem 1 holds. Furthermore, we verify Theorem 2 for a regular tetrahedron by descriptive geometry methods using dynamic geometry software. To do this we take advantage of the fact that this cubic surface can be represented by a parametric system of conics which lie in mutually parallel planes (Theorem 3).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal for Geometry and Graphics
ISSN
1433-8157
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
205-215
UT code for WoS article
—
EID of the result in the Scopus database
—