On a 3D Extension of the Simson-Wallace theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F14%3A43888184" target="_blank" >RIV/60076658:12410/14:43888184 - isvavai.cz</a>
Result on the web
<a href="https://geometrie.uibk.ac.at/icgg2014/?p=index" target="_blank" >https://geometrie.uibk.ac.at/icgg2014/?p=index</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a 3D Extension of the Simson-Wallace theorem
Original language description
: The following 3D extension of the Simson-Wallace theorem is proved by a method which differs from that used in the past (Theorem 1): Let K,L,M,N be orthogonal projections of a point P to the faces BCD, ACD, ABD, and ABC of a tetrahedron ABCD. Then, allpoints P with the property that the tetrahedron KLMN has a constant volume belong to a cubic surface (1). Next, the main theorem (Theorem 2) is proved which states that also the converse of Theorem 1 holds. Furthermore, we verify Theorem 2 for a regulartetrahedron by descriptive geometry methods using dynamic geometry software. To do this we take advantage of the fact that this cubic surface can be represented by a parametric system of conics which lie in mutually parallel planes (Theorem 3).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceeding of the 16th International Conference on Geometry and Graphics
ISBN
978-3-902936-46-2
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
1-9
Publisher name
Innsbruck University Press
Place of publication
Innsbruck
Event location
Innsbruck
Event date
Aug 4, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—