Absence of Magnetism in Continuous-Spin Systems with Long-Range Antialigning Forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F11%3A43871381" target="_blank" >RIV/60076658:12510/11:43871381 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10955-011-0274-z" target="_blank" >http://dx.doi.org/10.1007/s10955-011-0274-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10955-011-0274-z" target="_blank" >10.1007/s10955-011-0274-z</a>
Alternative languages
Result language
angličtina
Original language name
Absence of Magnetism in Continuous-Spin Systems with Long-Range Antialigning Forces
Original language description
We consider continuous-spin models on the d-dimensional hypercubic lattice with the spins sigma(x) a priori uniformly distributed over the unit sphere in R^n and the interaction energy having two parts: a short-range part, represented by a potential Phi,and a long-range antiferromagnetic part lambda |x-y|^(-s) sigma (x) dot sigma (y) for some exponent s } d and lambda}0. We assume that Phi is twice continuously differentiable, finite range and invariant under rigid rotations of all spins. For s in theinterval (d,d+2] and any lambda } 0, we then show that the expectation of each sigma (x) vanishes in all translation-invariant Gibbs states. In particular, the spontaneous magnetization is zero and block-spin averages vanish in all (translation invariantor not) Gibbs states. This contrasts the situation of lambda=0 where the ferromagnetic nearest-neighbor systems in d}2 exhibit strong magnetic order at sufficiently low temperatures. Our theorem extends an earlier result of A. van Enter
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Physics
ISSN
0022-4715
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
731-748
UT code for WoS article
000294228400001
EID of the result in the Scopus database
—