Interpolation between Hölder and Lebesgue spaces with applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F18%3A43897273" target="_blank" >RIV/60076658:12510/18:43897273 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X18304682#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X18304682#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2018.05.067" target="_blank" >10.1016/j.jmaa.2018.05.067</a>
Alternative languages
Result language
angličtina
Original language name
Interpolation between Hölder and Lebesgue spaces with applications
Original language description
Classical interpolation inequality of the type ||u||_X<=||u||_Y^{a}||u||_Z^{1-a} is well known in the case when X, Y, Z are Lebesgue spaces. In this paper we show that this result may be extended by replacing norms ||.||y or ||.||x by suitable Hölder semi-norm. We shall even prove sharper version involving weak Lorentz norm. We apply this result to prove the Gagliardo–Nirenberg inequality for a wider scale of parameters.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
466
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
160-168
UT code for WoS article
000438327400008
EID of the result in the Scopus database
2-s2.0-85048542856