Approximation of planar Sobolev W-2,W-1 homeomorphisms by piecewise quadratic homeomorphisms and diffeomorphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43902599" target="_blank" >RIV/60076658:12510/21:43902599 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/21:50018569 RIV/00216208:11320/21:10441167
Result on the web
<a href="https://www.esaim-cocv.org/articles/cocv/abs/2021/02/cocv200186/cocv200186.html" target="_blank" >https://www.esaim-cocv.org/articles/cocv/abs/2021/02/cocv200186/cocv200186.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2021019" target="_blank" >10.1051/cocv/2021019</a>
Alternative languages
Result language
angličtina
Original language name
Approximation of planar Sobolev W-2,W-1 homeomorphisms by piecewise quadratic homeomorphisms and diffeomorphisms
Original language description
Given a Sobolev homeomorphism f is an element of W-2,W-1 in the plane we find a piecewise quadratic homeomorphism that approximates it up to a set of epsilon measure. We show that this piecewise quadratic map can be approximated by diffeomorphisms in the W-2,W-1 norm on this set.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ESAIM: Control, Optimisation and Calculus of Variations
ISSN
1292-8119
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
26
Country of publishing house
FR - FRANCE
Number of pages
39
Pages from-to
—
UT code for WoS article
000636772000007
EID of the result in the Scopus database
2-s2.0-85103521612