All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In Vitro Metabolic Transformation of Pharmaceuticals by Hepatic S9 Fractions from Common Carp (Cyprinus carpio)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43900943" target="_blank" >RIV/60076658:12520/20:43900943 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/molecules25112690" target="_blank" >https://doi.org/10.3390/molecules25112690</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules25112690" target="_blank" >10.3390/molecules25112690</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In Vitro Metabolic Transformation of Pharmaceuticals by Hepatic S9 Fractions from Common Carp (Cyprinus carpio)

  • Original language description

    Water from wastewater treatment plants contains concentrations of pharmaceutically active compounds as high as micrograms per liter, which can adversely affect fish health and behavior, and contaminate the food chain. Here, we tested the ability of the common carp hepatic S9 fraction to produce the main metabolites from citalopram, metoprolol, sertraline, and venlafaxine. Metabolism in fish S9 fractions was compared to that in sheep. The metabolism of citalopram was further studied in fish. Our results suggest a large difference in the rate of metabolites formation between fish and sheep. Fish hepatic S9 fractions do not show an ability to form metabolites from venlafaxine, which was also the case for sheep. Citalopram, metoprolol, and sertraline were metabolized by both fish and sheep S9. Citalopram showed concentration-dependent N-desmethylcitalopram formation with V-max = 1781 pmol/min/mg and K-m = 29.7 mu M. The presence of ellipticine, a specific CYP1A inhibitor, in the incubations reduced the formation of N-desmethylcitalopram by 30-100% depending on the applied concentration. These findings suggest that CYP1A is the major enzyme contributing to the formation of N-desmethylcitalopram. In summary, the results from the present in vitro study suggest that common carp can form the major metabolites of citalopram, metoprolol, and sertraline.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecules

  • ISSN

    1420-3049

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000553858800227

  • EID of the result in the Scopus database

    2-s2.0-85086604535