Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43901072" target="_blank" >RIV/60076658:12520/20:43901072 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/20:00343586
Result on the web
<a href="https://doi.org/10.3390/app10196954" target="_blank" >https://doi.org/10.3390/app10196954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10196954" target="_blank" >10.3390/app10196954</a>
Alternative languages
Result language
angličtina
Original language name
Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems
Original language description
Fish feed delivery is one of the challenges which fish farmers encounter daily. The main aim of the feeding process is to ensure that every fish is provided with sufficient feed to maintain desired growth rates. The properties of fish feed pellet, such as water stability, degree of swelling or floating time, are critical traits impacting feed delivery. Some considerable effort is currently being made with regard to the replacement of fish meal and fish oil with other sustainable alternative raw materials (i.e., plant or insect-based) with different properties. The main aim of this study is to investigate the motion and residence time distribution (RTD) of two types of solid feed pellets with different properties in a cylindrical fish tank. After experimental identification of material and geometrical properties of both types of pellets, a detailed 3D computational fluid dynamics (CFD) study for each type of pellets is performed. The mean residence time of pellets injected at the surface of the fish tank can differ by up to 75% depending on the position of the injection. The smallest residence time is when the position is located at the center of the liquid surface (17 s); the largest is near the edge of the tank (75 s). The maximum difference between the two studied types of pellets is 25% and it increases with positions closer to the center of the tank. The maximum difference for positions along the perimeter at 3/4 tank radius is 8%; the largest residence times are observed at the opposite side of the water inlet. Based on this study, we argue that the suitability of different solid feed pellets for aquaculture systems with specific fish can be determined, and eventually the pellet composition (formula) as well as the injection position can be optimized.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20902 - Bioprocessing technologies (industrial processes relying on biological agents to drive the process) biocatalysis, fermentation
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>R - Projekt Ramcoveho programu EK
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
2076-3417
Volume of the periodical
10
Issue of the periodical within the volume
19
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
—
UT code for WoS article
000586398700001
EID of the result in the Scopus database
2-s2.0-85092798587