Effects of Dietary Protein and Lipid Levels on Growth, Body Composition, Blood Biochemistry, Antioxidant Capacity and Ammonia Excretion of European Grayling (Thymallus thymallus)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F21%3A43902691" target="_blank" >RIV/60076658:12520/21:43902691 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3389/fmars.2021.715636" target="_blank" >https://doi.org/10.3389/fmars.2021.715636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmars.2021.715636" target="_blank" >10.3389/fmars.2021.715636</a>
Alternative languages
Result language
angličtina
Original language name
Effects of Dietary Protein and Lipid Levels on Growth, Body Composition, Blood Biochemistry, Antioxidant Capacity and Ammonia Excretion of European Grayling (Thymallus thymallus)
Original language description
This study evaluated growth, body composition, antioxidant capacity, innate immunity and ammonia excretion of European grayling (Thymallus thymallus) fed diets containing different protein and lipid contents. Six diets were produced to contain 30, 40, or 50% protein and 10 or 20% lipid. Juvenile fish averaging 25.2 +/- 0.28 g were stocked into eighteen 450-L circular tanks in a recirculating aquaculture system (RAS) and fed the test diets to satiation twice daily for 12 weeks. Fish weight gain (WG) was enhanced (P < 0.05) as dietary protein increased from 30% (229% WG) to 40% (262% WG) and plateaued thereafter. Enhancing protein and lipid content of diet led to reduced feed intake. Also, feed efficiency was improved by increasing dietary protein (by 40.8%) and lipid (by 16.5%) levels. An interaction of protein and lipid was found on whole-body lipid, and muscle lipid content increased as dietary lipid level increased. Muscle arachidonic acid (ARA), eicosapentaenoic acid (EPA, 20:5n-3) and total n-6 long-chain polyunsaturated fatty acids (LC-PUFA) contents enhanced by increasing dietary protein level. Moreover, increasing fat content of diet led to enhanced muscle linoleic acid, linolenic acid, total monounsaturated fatty acids (MUFA), total n-6, ratio of docosahexaenoic acid (DHA, 22:6n-3) to EPA and n-6/n-3. However, EPA, DHA, total n-6 LC-PUFA, total n-3, total n-3 LC-PUFA, and EPA/ARA ratio decreased at higher dietary lipid level. Serum triglyceride (TG) level and lactate dehydrogenase (LDH) activity decreased as dietary protein level increased. Increasing fat content of diet led to enhanced serum TG, cholesterol and glucose concentrations and reduced alanine aminotransferase, aspartate amino transferase and LDH activities. Serum malondialdehyde concentration was enhanced by increasing both dietary protein and lipid. Furthermore, serum myeloperoxidase activity was enhanced at higher dietary lipid level. Water ammonium nitrogen (NH4+-N) concentration was measured after 5 and 24 h of last feeding, and the results indicated the reduction of ammonia excretion as dietary lipid content increased. These findings suggest that 40% dietary protein can support optimal growth of juvenile European grayling reared in RAS and increasing lipid content from 10 to 20% can improve feed utilization and reduce ammonia excretion to the rearing water.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40103 - Fishery
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Marine Science
ISSN
2296-7745
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
neuveden
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
—
UT code for WoS article
000684992800001
EID of the result in the Scopus database
2-s2.0-85112480329