Entropy Approach of Processing for Fish Acoustic Telemetry Data to Detect Atypical Behavior During Welfare Evaluation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F23%3A43906624" target="_blank" >RIV/60076658:12520/23:43906624 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-34960-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-031-34960-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-34960-7_2" target="_blank" >10.1007/978-3-031-34960-7_2</a>
Alternative languages
Result language
angličtina
Original language name
Entropy Approach of Processing for Fish Acoustic Telemetry Data to Detect Atypical Behavior During Welfare Evaluation
Original language description
Fish telemetry is an important tool for studying fish behavior, allowing to monitor fish movements in real-time. Analyzing telemetry data and translating it into meaningful indicators of fish welfare remains a challenge. This is where entropy approaches can provide valuable insights. Methods based on information theory can quantify the complexity and unpredictability of animal behavior distribution, providing a comprehensive understanding of the animal state. Entropy-based techniques can analyze telemetry data and detect changes in fish behavior, or irregularity. By analyzing the accelerometer data, using entropy approach, it is possible to identify atypical behavior that may be indicative of compromised welfare © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10610 - Biophysics
Result continuities
Project
<a href="/en/project/LM2018099" target="_blank" >LM2018099: South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-34959-1
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
14-26
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlin
Event location
Meloneras
Event date
Jun 12, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—