Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F16%3A00459767" target="_blank" >RIV/60077344:_____/16:00459767 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3389/fmicb.2016.00211" target="_blank" >http://dx.doi.org/10.3389/fmicb.2016.00211</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmicb.2016.00211" target="_blank" >10.3389/fmicb.2016.00211</a>
Alternative languages
Result language
angličtina
Original language name
Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines.
Original language description
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first metagenomic snapshots of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai,Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter,and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a salt-in strategy of osmotic adaptation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
EE - Microbiology, virology
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00243S" target="_blank" >GA13-00243S: Unveiling life strategies of selected groups of planktonic Betaproteobacteria in relationship to carbon flow to higher trophic levels</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Microbiology
ISSN
1664-302X
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
February
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
—
UT code for WoS article
000370870700001
EID of the result in the Scopus database
2-s2.0-84962090377