All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Role of inhibitory factor IF1 during the differentiation of T. brucei

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F16%3A00488334" target="_blank" >RIV/60077344:_____/16:00488334 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.parazitologie.cz/protozoologie/Protodny2016/JPD_sbornik_2016.pdf" target="_blank" >http://www.parazitologie.cz/protozoologie/Protodny2016/JPD_sbornik_2016.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Role of inhibitory factor IF1 during the differentiation of T. brucei

  • Original language description

    Trypanosoma brucei undergoes a complex life cycle as it alternates between a mammalian host and the blood-feeding insect vector, a tsetse fly. Due to the different environments, the distinct life stages differ in their energy metabolism, i.e. insect stage (procyclic cells, PF) depends on mitochondrial oxidative phosphorylation (OXPHOS) for ATP production while the bloodstream stage (BF) gains energy by aerobic glycolysis. The dramatic switch from the OXPHOS to glycolysis happens during the complex development of the PF in the tsetse fly. The molecular mechanism behind this shift is still unknown. Importantly, an induced over-expression of a differentiation factor, RNA-binding protein 6 (RBP6), results in the appearance of epimastigotes and metacyclic trypanosome in vitro (Kolev, 2012). We have established this RBP6 overexpressing cell line and the presence of the distinct cell types was verified using DAPI staining to visualize position of the kinetoplast to nuclei and by an endocytosis test. Moreover, we checked for changes in expression of subunits of respiratory complexes III and V. Interestingly, the level of T. brucei inhibitory factor 1 (TbIF1), a specific natural inhibitor of complex V, was significantly increased in the RBP6-induced cells. At the same time, we detected elevated levels of radical oxygen species (ROS) and changes in mitochondrial membrane potential. This is similar to what is reported in cancer cells, where high levels of IF1 expression inhibits ATP synthesis and creates a ROS signal that triggers the metabolic switch from OXPHOS to aerobic glycolysis. Determining how TbIF1 is regulated and what is the signaling mechanism during the trypanosome differentiation are important aims of this project.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/LL1205" target="_blank" >LL1205: Exploration of the unique charakters od the Trypanosoma brucei FoF1 ATP synthase complex for future drug development against african sleeping sickness.</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů