Mitochondrion remodeling during T. b. brucei developmental differentiation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00488337" target="_blank" >RIV/60077344:_____/17:00488337 - isvavai.cz</a>
Alternative codes found
RIV/60077344:_____/17:00488338
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mitochondrion remodeling during T. b. brucei developmental differentiation
Original language description
Trypanosoma brucei undergoes a complex life cycle as it alternates between a mammalian host and the blood-feeding insect vector, a tsetse fly. Due to the different environments, the distinct life stages differ in their energy metabolism, i.e. insect stage (procyclic cells, PS) depends on mitochondrial oxidative phosphorylation (OXPHOS) for ATP production while the bloodstream stage (BS) gains energy by aerobic glycolysis. The dramatic switch from the OXPHOS to glycolysis happens during the complex development of the PS in the tsetse fly. This development differentiation is characterized by extensive remodeling of mitochondrion structure and changes in mitochondrial bioenergetics. Importantly, the molecular mechanism behind this process is completely unknown. We have established the in vitro differentiation system, in which the transition from PS to epimastigotes followed by differentiation to transmission-ready metacylic trypanosomes is triggered by RNA binding protein 6 (RBP6) expression. This in vitro induced differentiation of PF cells takes 8 days. The appearance of epimastigotes and metacyclic trypanosomes in the culture was mapped using light and fluorescent microscopy. The whole cell proteome of cell culture harvested every day after the RBP6 induction was identified by label-free quantitative mass spectrometry. This proteomic data serves as a resource for further detailed characterization of changes happening in the parasite mitochondrion as well as identification of possible candidates involved in the PS differentiation.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/LL1205" target="_blank" >LL1205: Exploration of the unique charakters od the Trypanosoma brucei FoF1 ATP synthase complex for future drug development against african sleeping sickness.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů