Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00474323" target="_blank" >RIV/60077344:_____/17:00474323 - isvavai.cz</a>
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fcimb.2017.00074/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fcimb.2017.00074/full</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?
Original language description
Ticks are arthropods distributed worldwide that constitute the most important vectors of diseases to animals, and second to mosquitoes regarding pathogens of public health importance. Ticks are remarkably plastic and can colonize diverse ecological niches of the planet, from tropics to polar areas. In the last decade, the reports of tick-borne pathogens have increased sharply, motivating vigorous research programs that addressed major questions on the epidemiology of tick-borne diseases, vector-host-pathogen interactions, tick ecology, and tick genomics. Notably, the first tick genome was released this year, opening new possibilities to explore tick-host-pathogen interactions. In contrast, the evolutionary and ecological implications of tick-pathogen associations have received comparatively less attention. Herein, we hypothesized that tick-pathogen associations evolved to form “intimate epigenetic relationships” similar to those described for Theileria spp. and its vertebrate host in which the pathogen induces transcriptional reprogramming in infected ticks. This will ultimately favor pathogen propagation, but will also select for the most suitable ecological adaptations in the tick vector. These phenotypic and genetic changes may have the potential to be transmitted to the next generation of ticks. As a result, the ecological associations between tick, vertebrates, and pathogens would evolve to maximize pathogen circulation in these communities.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů