Anaerobic peroxisomes in Mastigamoeba balamuthi
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F20%3A00538619" target="_blank" >RIV/60077344:_____/20:00538619 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/20:10411518
Result on the web
<a href="https://www.pnas.org/content/117/4/2065" target="_blank" >https://www.pnas.org/content/117/4/2065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.1909755117" target="_blank" >10.1073/pnas.1909755117</a>
Alternative languages
Result language
angličtina
Original language name
Anaerobic peroxisomes in Mastigamoeba balamuthi
Original language description
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi. We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either p-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named “anaerobic” peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424
e-ISSN
—
Volume of the periodical
117
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
2065-2075
UT code for WoS article
000509791700037
EID of the result in the Scopus database
2-s2.0-85078687098