All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00555513" target="_blank" >RIV/60077344:_____/22:00555513 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10442155

  • Result on the web

    <a href="https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01247-w" target="_blank" >https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01247-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12915-022-01247-w" target="_blank" >10.1186/s12915-022-01247-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics

  • Original language description

    Background Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol. The group Archamoebae includes anaerobes bearing both anaerobic peroxisomes and MROs, specifically hydrogenosomes in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba histolytica, while the organelles within the third lineage represented by Pelomyxa remain uncharacterized. Results We generated high-quality genome and transcriptome drafts from Pelomyxa schiedti using single-cell omics. These data provided clear evidence for anaerobic derivates of mitochondria and peroxisomes in this species, and corresponding vesicles were tentatively identified in electron micrographs. In silico reconstructed MRO metabolism harbors respiratory complex II, electron-transferring flavoprotein, a partial TCA cycle running presumably in the reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenases, a glycine cleavage system, a sulfate activation pathway, and an expanded set of NIF enzymes for iron-sulfur cluster assembly. When expressed in the heterologous system of yeast, some of these candidates localized into mitochondria, supporting their involvement in the MRO metabolism. The putative functions of P. schiedti peroxisomes could be pyridoxal 5 '-phosphate biosynthesis, amino acid and carbohydrate metabolism, and hydrolase activities. Unexpectedly, out of 67 predicted peroxisomal enzymes, only four were also reported in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-dehydrogenase, and d-lactate dehydrogenase. Localizations in yeast corroborated peroxisomal functions of the latter two. Conclusions This study revealed the presence and partially annotated the function of anaerobic derivates of mitochondria and peroxisomes in P. schiedti using single-cell genomics, localizations in yeast heterologous systems, and transmission electron microscopy. The MRO metabolism resembles that of M. balamuthi and most likely reflects the state in the common ancestor of Archamoebae. The peroxisomal metabolism is strikingly richer in P. schiedti. The presence of myo-inositol 2-dehydrogenase in the predicted peroxisomal proteome corroborates the situation in other Archamoebae, but future experimental evidence is needed to verify additional functions of this organelle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10601 - Cell biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BMC BIOLOGY

  • ISSN

    1741-7007

  • e-ISSN

    1741-7007

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    56

  • UT code for WoS article

    000762413400001

  • EID of the result in the Scopus database

    2-s2.0-85125602669