All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Variations in Rainbow Trout Immune Responses against A. salmonicida: Evidence of an Internal Seasonal Clock in Oncorhynchus mykiss

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00555057" target="_blank" >RIV/60077344:_____/22:00555057 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12520/22:43904445

  • Result on the web

    <a href="https://www.mdpi.com/2079-7737/11/2/174" target="_blank" >https://www.mdpi.com/2079-7737/11/2/174</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/biology11020174" target="_blank" >10.3390/biology11020174</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Variations in Rainbow Trout Immune Responses against A. salmonicida: Evidence of an Internal Seasonal Clock in Oncorhynchus mykiss

  • Original language description

    Simple Summary Our bodies run on an internal schedule or clock, telling us when to rest, sleep, or digest, and when to wake up, be active, or burn calories. That's why we experience jetlag because we may well set our watches forward or backward, but our bodies haven't yet. Imagine a seasonal clock that helps get us through the year, not just through the day. We set out to prove that such a clock exists in fish just like it does in humans. We exposed rainbow trout to bacteria to imitate natural encounters. We raised fish in the laboratory under the same light and temperature all year long. When we tested them in summer and winter, the fish consequently experienced days that were artificially longer/shorter or warmer/colder. Nonetheless, certain fish white blood cells didn't react or see the bacteria as a threat in winter unlike in summer. They were probably behaving based on the time of year, or season and not on their immediate environment, just like how a jetlagged individual behaves based on an internal clock, not on what it's like outside. Immunity and other processes are regulated differently between seasons, making animals less or more vulnerable in summer or winter. In poikilothermic vertebrates, seasonality influences different immunological parameters such as leukocyte numbers, phagocytic activity, and antibody titers. This phenomenon has been described in different teleost species, with immunological parameters peaking during warmer months and decreased levels during winter. In this study, the cellular immune responses of rainbow trout (Oncorhynchus mykiss) kept under constant photoperiod and water temperature against intraperitoneally injected Aeromonas salmonicida during the summer and winter were investigated. The kinetics of different leukocyte subpopulations from peritoneal cavity, spleen, and head kidney in response to the bacteria was measured by flow cytometry. Furthermore, the kinetics of induced A. salmonicida-specific antibodies was evaluated by ELISA. Despite maintaining the photoperiod and water temperature as constant, different cell baselines were detected in all organs analyzed. During the winter months, B- and T-cell responses were decreased, contrary to what was observed during summer months. However, the specific antibody titers were similar between the two seasons. Natural antibodies, however, were greatly increased 12 h post-injection only during the wintertime. Altogether, our results suggest a bias toward innate immune responses and potential lymphoid immunosuppression in the wintertime in trout. These seasonal differences, despite photoperiod and water temperature being kept constant, suggest an internal inter-seasonal or circannual clock controlling the immune system and physiology of this teleost fish.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10617 - Marine biology, freshwater biology, limnology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biology

  • ISSN

    2079-7737

  • e-ISSN

    2079-7737

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    174

  • UT code for WoS article

    000761410400001

  • EID of the result in the Scopus database

    2-s2.0-85123243216